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Exercise 1.1 (The Shrédinger equation and uniqueness)
For any t € R\ {0} and = € R?, we set
1 il=|?

ki(zx) := (47rt)%e EE

1. Let up € .#/(R%). Show that the maps t € R ~ k; x ug belongs to
C(R;.#'(R%)) and define a temperate distribution on R x R%. (Hint:
show that for any f € ./ (R%), t € R — k; x f belongs to C(R;.7'(R%))
and extends this result by duality.)

In the following, we set u := k % uyg.
2. Show that u satisfies the Schrédinger equation in .#/(R x R?), that is
(i0; + A)u =0 in #'(R x RY).

3. Show that, for any ¢ € .7(R x R?) and t € R\ {0}

t
[ 0265,
0
= (u0,i9(0, ) 7/ (ra),. 7Ry — (ult), ip(t, ) 51 (ma), 7 (re) (1)

4. Let v € L(RY), T > 0 and xy7 € C(R) such that xr(t) = 1 for any
t € [0,T]. We define the function ® by setting for any (¢,£) € R x R4,

@7 (t,€) = e T xr ().
(a) Show that o7 : (t,2) € R x R? s F~1(®T(¢,€)) belongs to .7 (R x
R?) and satisfies
10T + ApT =0 in [0,T] x RY.
(b) Assume that ug = 0. Deduce from (1) that u(T) = 0 in .’(R%).

5. Deduce that for any uy € .#/(R9), the distribution k % ug is the unique
solution of the Schrédinger equation in .%/(R x R?) satisfying (1) for any
pe.ZRxR? and t € R\ {0}.

Exercise 1.2 (Green’s function for the Laplacian)

1. Let g : R — R be the function given by g(z) = %e*m for z € R. Show that
g (more precisely the associated distribution, ¢,) is the unique solution in
7'(R) to the equation

(1= A)p = 0o,

by
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(a) the Fourier transform;

(b) using the distributional derivative.
2. Prove that for f € .#(R) the unique solution to the equation
1-Au=f

Remark 1.2.1. The function g is called the fundamental solution or Green’s
function for the equation.

Exercise 1.3 (Example of distributions belonging in H*(R?)
1. Let a € RY. Show that §, € H~*(R%) for any s > d/2.
2. Let a,b € R such that a < b. Show that 1j,; € H*(R) for any s < %
3. Why 1,4 ¢ H*(R) for s > 1 7

Homework (hand in on 12.03.2025).

Exercise 1.4 (Dispersive estimate for Schrédinger equation)

Let ug € LP(RY) for p € [1,2] and u be the solution of the Schrédinger equation
in the sens of Exercise 1.1, Item 5. with initial data uqg.

1. Show that, if ug € L'(R?), then

vt e R\ {0}, fu(®)llz= <

U
grlle

2. Show that, if ug € L%(R%), then
vt e RA{0},  u(®)llL> = [luoll2-
(Hint: use that .Z (k) = e~ 11" in .7/ (R?).)

3. (Bonus) Let p’ a real number such that % + i = 1. Show that,
VEe R\{0}, [u(®)llL» <

(Hint: use the Riesz-Thorin Theorem.)

Remark 1.4.1. The estimate shown in the last question is called a dispersive
estimate. This estimate are the main tools to derive the Strichartz estimate
for the Schridinger equation. These estimate are use to solve a large class of
nonlinear Schrodinger equations.
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Exercise 1.5 (Nonlinear heat equation)

Let d > 3 and ug € L4(RY).

Part 1: Functional setting. We define the set

K= {u € E((0,,+00); L*(R) \ e 2= sup{st fu(s, ) 2o} o= fullc < +oo}.
1. Show that K is a Banach space.

Part 2: Nonlinear estimates. For any u, v and w in K, we define

vVt >0, J(u,v,w)(t):= /0 e (u(s, Yo(s, Yw(s,-)) ds.

1. In this question we will show that for any u, v and w in K, we have
T (u,v,w) € K and that there is a positive constant C such that

17 (u, v, w)[x < Cr|ullklvllfw]k- (2)
Let u, v and w in K.

(a) Show that

vt >0, |7 (u, v, w) ()] 20 < </t

1
o (- s>;d5) s, Jo(s, s, ) -

(b) Deduce that

3
4

t 1
Vvt >0, [T (uv,w)(t)]g2a < </ T3 dS) [ullxllvllxllwllk-
0 (t— 8)28

(¢) Deduce that (2) holds.
(d) Show that 7 (u,v,w) € K.

Part 3: Duhamel formula. Let ug € L4(R?). For any ¢t > 0 and u € K, we
define
®(u)(t) := e up + T (u,u,u)(t).

1. Show that there exists a constant C such that for any u € K, we have
12(w)llx < Ca (luollpa + ulli) (3)
and that ® € K.

2. Show that there exists a constant C'3 such that for any u and v in K, we
have

1®(u) — @(v)llx < Cs (lullk + lol& + lullvllk) [lu —vik.  (4)
(Hint: use Estimate (2))
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Part 4: Fixed point argument Let ¢ > 0. Assume that
[uol[Le <e. (5)
and we introduce the set
B(2¢) :={u e K| |Jullx < 2¢}.

1. Show that B(2¢) is a complete metric space for the distance induce be K
norm, namely || - ||k.

2. Show that there exists a constant C4 which does not depends of €, such
that for any w and v in B(2¢), we have

1@ (u)|lk < Ca(l+%)e

and
1@ (u) — ®(v)|lk < Cae®lu— vk

3. Choose ¢ > 0 small enough such that ® is a strict contraction of B(2¢).

4. Deduce that ® has a unique fixed point u. (Hint: use the fixed point
theorem.)

Remark 1.5.1. The fized points of ® are called the milds solution of the equa-
tion

{@U—AU—FU?’ =0, in]0,+oo[xR%, (©)

u(07 ) = Up, in Rda

for small enough initial data ug. We can obtain the existence of milds solu-
tion for ug large, but only for small times. The same method (so called "Kato
method") can be use to show the existence of solution to the Navier-Stokes equa-
tion.



